Inorg. Chem. 2007, 46, 2666–2673



# **Biphenolate Phosphine Complexes of Group 4 Metals**

Lan-Chang Liang,\*,† Yu-Ning Chang,† and Hon Man Lee<sup>‡</sup>

Department of Chemistry and Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, and Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan

Received December 4, 2006

The preparation and structural characterization of a series of group 4 complexes supported by 2,2'phenylphosphinobis(4,6-di-*tert*-butylphenolate) ([OPO]<sup>2-</sup>) are described. The reaction of either H<sub>2</sub>[OPO] with Ti-(OR)<sub>4</sub> (R = Et, 'Pr) or Li<sub>2</sub>[OPO] with TiCl<sub>4</sub>(THF)<sub>2</sub> produced yellowish-orange crystals of Ti[OPO]<sub>2</sub>, regardless of the stoichiometry of the starting materials employed. Comproportionation of the bis-ligand complex Ti[OPO]<sub>2</sub> with 1 equiv of TiCl<sub>4</sub>(THF)<sub>2</sub> led to the formation of [OPO]TiCl<sub>2</sub>(THF) as brownish-red crystals. Surprisingly, treatment of H<sub>2</sub>[OPO] with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>2</sub>MCl<sub>2</sub> (M = Zr, Hf), irrespective of the molar ratio, generated colorless crystals of the corresponding bis-ligand complex [OPO]<sub>2</sub>M(OH<sub>2</sub>) as an aqua adduct. The solution and solid-state structures of these group 4 complexes were all characterized by multinuclear NMR spectroscopy and X-ray crystallography, respectively.

#### Introduction

Group 4 complexes of chelating biphenolate ligands are currently receiving considerable attention largely because of their potential use as homogeneous catalyst precursors for polymerization of terminal olefins and ring-opening polymerization of heterocyclic molecules.<sup>1–6</sup> The chelating biphenolate ligands are versatile in view of a large number of possible substituents potentially available for the two phenolate rings, from which the electronic and steric properties of the derived metal complexes may be finely tailored. The two phenolate rings may be either directly connected to each other in the ortho position<sup>7–9</sup> or bridged by a donor atom<sup>6,9–16</sup> or a hydrocarbon linkage.<sup>9,14,16–20</sup> As a result, a rich structural variety of biphenolato group 4 complexes has evolved. It

- <sup>†</sup> National Sun Yat-sen University.
- <sup>‡</sup> National Changhua University of Education.
- Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 429–447.
- (2) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147-6176.
- (3) Yeori, A.; Goldberg, I.; Shuster, M.; Kol, M. J. Am. Chem. Soc. 2006, 128, 13062–13063.
- (4) Gendler, S.; Segal, S.; Goldberg, I.; Goldschmidt, Z.; Kol, M. Inorg. Chem. 2006, 45, 4783–4790.
- (5) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122, 10706–10707.
- (6) Kim, Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437–1447.
- (7) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041–4042.

2666 Inorganic Chemistry, Vol. 46, No. 7, 2007

has been demonstrated that the reactivity of these compounds may be altered significantly by careful modification of the biphenolate linkage. For instance, the titanium complexes of the sulfide-bridged 2,2'-thiobis(6-*tert*-butyl-4-methylphenolate) ligand (1; Figure 1) are active catalyst precursors for  $\alpha$ -olefin polymerization,<sup>9,15,21-23</sup> the catalytic activity of

- (8) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251– 8259.
- (9) van der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. J. Am. Chem. Soc. 1995, 117, 3008–3021.
- (10) Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Yeyama, N.; Nakamura, A.; Yasuda, H.; Harada, A. *Macromolecules* **2002**, *35*, 7538–7544.
- (11) Groysman, S.; Goldberg, I.; Goldschmidt, Z.; Kol, M. *Inorg. Chem.* **2005**, *44*, 5073–5080.
- (12) Segal, S.; Goldberg, I.; Kol, M. Organometallics 2005, 24, 200-202.
- (13) Capacchione, C.; Proto, A.; Ebeling, H.; Mulhaupt, R.; Moller, K.; Spaniol, T. P.; Okuda, J. J. Am. Chem. Soc. 2003, 125, 4964–4965.
- (14) Sernetz, F. G.; Mulhaupt, R.; Fokken, S.; Okuda, J. Macromolecules 1997, 30, 1562–1569.
- (15) Fokken, S.; Spaniol, T. P.; Kang, H. C.; Massa, W.; Okuda, J. Organometallics 1996, 15, 5069–5072.
- (16) Takashima, Y.; Nakayama, Y.; Hirao, T.; Yasuda, H.; Harada, A. J. Organomet. Chem. 2004, 689, 612–619.
- (17) Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725– 729.
- (18) Floriani, C.; Corazza, F.; Lesueur, W.; Chiesi-Villa, A.; Guastini, C. *Angew. Chem., Int. Ed. Engl.* **1989**, 28, 66–67.
- (19) Corazza, F.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *Inorg. Chem.* **1991**, *30*, 145–148.
- (20) Okuda, J.; Fokken, S.; Kang, H. C.; Massa, W. Chem. Ber. 1995, 128, 221-227.
- (21) Kakugo, M.; Miyatake, T.; Mizunuma, K. Chem. Express 1987, 2, 445–448.

10.1021/ic062314e CCC: \$37.00 © 2007 American Chemical Society Published on Web 02/14/2007

<sup>\*</sup> To whom correspondence should be addressed. E-mail: lcliang@mail.nsysu.edu.tw.



Figure 1. Representative examples of chelating biphenolate ligands.

which has been found to be higher than that of the methylenebridged 2,2'-methylenebis(6-tert-butyl-4-methylphenolate) (2) analogues.<sup>18-20</sup> The increased reactivity of the former complexes has been ascribed to sulfur coordination to the electrophilic titanium center in the catalytically active species, although likely in a hemilabile fashion, thereby leading to a lower activation barrier for olefin insertion than that found for the latter.<sup>15,24,25</sup> These results, along with our general interests in metal complexes of mismatched hard-soft donor-acceptor pairs,<sup>26-36</sup> prompt us to investigate the coordination chemistry of group 4 complexes of chelating biphenolates that contain a soft phosphine linkage (3). We note that although ligands of this type have been known since 1980,<sup>37</sup> group 4 complexes incorporating a biphenolate phosphine ligand are extremely rare.<sup>38</sup> In this contribution, we aim to demonstrate the synthetic possibility and establish the structural characterization of group 4 complexes of 2,2'phenylphosphinobis(4,6-di-tert-butylphenolate) ([OPO]<sup>2-</sup>). It is worth noting that compounds described herein represent an intriguing addition to the family of rarely encountered triarylphosphine complexes of group 4 metals that are structurally characterized to date.<sup>38–44</sup>

- (22) Miyatake, T.; Mizunuma, K.; Seki, Y.; Kakugo, M. *Makromol. Chem., Rapid Commun.* **1989**, *10*, 349–352.
- (23) Schaverien, C. J.; van der Linden, A. J.; Orpen, A. G. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1994, 35, 672–673.
- (24) Froese, R. D. J.; Musaev, D. G.; Matsubara, T.; Morokuma, K. J. Am. Chem. Soc. 1997, 119, 7190-7196.
- (25) Froese, R. D. J.; Musaev, D. G.; Morokuma, K. Organometallics 1999, 18, 373–379.
- (26) Liang, L.-C. Coord. Chem. Rev. 2006, 250, 1152-1177.
- (27) Liang, L.-C.; Chien, P.-S.; Huang, Y.-L. J. Am. Chem. Soc. 2006, 128, 15562–15563.
- (28) Liang, L.-C.; Chien, P.-S.; Lin, J.-M.; Huang, M.-H.; Huang, Y.-L.; Liao, J.-H. Organometallics 2006, 25, 1399–1411.
- (29) Liang, L.-C.; Čhien, P.-S.; Huang, M.-H. Organometallics 2005, 24, 353–357.
- (30) Liang, L.-C.; Lin, J.-M.; Lee, W.-Y. Chem. Commun. 2005, 2462–2464.
- (31) Liang, L.-C.; Lee, W.-Y.; Hung, C.-H. Inorg. Chem. 2003, 42, 5471– 5473.
- (32) Liang, L.-C.; Lin, J.-M.; Hung, C.-H. Organometallics 2003, 22, 3007–3009.
- (33) Huang, M.-H.; Liang, L.-C. Organometallics 2004, 23, 2813-2816.
- (34) Liang, L.-C.; Lee, W.-Y.; Yin, C.-C. *Organometallics* **2004**, *23*, 3538–3547.
- (35) Lee, W.-Y.; Liang, L.-C. Dalton Trans. 2005, 1952-1956.
- (36) Liang, L.-C.; Huang, M.-H.; Hung, C.-H. Inorg. Chem. 2004, 43, 2166–2174.
- (37) Tzschach, A.; Nietzschmann, E. Z. Chem. 1980, 20, 341-342.
- (38) Priya, S.; Balakrishna, M. S.; Mague, J. T. Chem. Lett. 2004, 33, 308– 309.
- (39) Cotton, F. A.; Kibala, P. A. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 270–272.
- (40) Chien, P.-S.; Liang, L.-C. Inorg. Chem. 2005, 44, 5147-5151.
- (41) MacLachlan, E. A., Fryzuk, M. D. Organometallics 2005, 24, 1112– 1118.
- (42) Willoughby, C. A.; Duff, R. R. J.; Davis, W. M.; Buchwald, S. L. Organometallics 1996, 15, 472–475.

## **Results and Discussion**

The reactions of Li<sub>2</sub>[OPO]<sup>45</sup> with 1 equiv of TiCl<sub>4</sub>(THF)<sub>2</sub><sup>46</sup> in a variety of solvents such as toluene or tetrahydrofuran (THF) at -35 °C produced a mixture of [OPO]TiCl<sub>2</sub>(THF) (vide infra), Ti[OPO]<sub>2</sub>, and some unidentified materials, as indicated by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy. The formation of a significant amount (ca. 25%) of minor Ti[OPO]<sub>2</sub> accompanied with major [OPO]TiCl2(THF) is suggestive of a comparable reactivity of [OPO]TiCl<sub>2</sub>(THF) and TiCl<sub>4</sub>(THF)<sub>2</sub> with respect to Li<sub>2</sub>[OPO] under the conditions employed. Attempts to selectively isolate the anticipated [OPO]TiCl<sub>2</sub>-(THF) from these reaction mixtures led instead to bis-ligand complex Ti[OPO]<sub>2</sub> as yellowish-orange crystals after standard workup procedures. The selective isolation of Ti[OPO]<sub>2</sub> rather than [OPO]TiCl<sub>2</sub>(THF) is ascribed to the higher crystallinity of the former complex. Similar results were also obtained from reactions of  $H_2[OPO]$  with TiCl<sub>4</sub>(THF)<sub>2</sub> in the presence of 2 equiv of triethylamine, a phenomenon that is reminiscent of what has been reported for reactions involving 1 and 2.9 Surprisingly, protonolysis of Ti(OR)<sub>4</sub> (R = Et, Pr) or  $[(Me_3Si)_2N]_2TiCl_2^{4747}$  with 1 equiv of H<sub>2</sub>-[OPO] in toluene or pentane at -35 °C generated Ti[OPO]<sub>2</sub> exclusively, as indicated by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy.

On the basis of the aforementioned results, analytically pure bis-ligand complex Ti[OPO]<sub>2</sub> is thus readily prepared in high yield from reactions of either  $H_2[OPO]$  with  $Ti(OR)_4$ (R = Et, Pr) or Li<sub>2</sub>[OPO] with TiCl<sub>4</sub>(THF)<sub>2</sub> in a 2:1 ratio (Scheme 1). The solution NMR spectroscopic data of Ti- $[OPO]_2$  are all consistent with a  $C_2$ -symmetric geometry for this molecule. The <sup>1</sup>H NMR spectrum reveals four wellresolved singlet resonances for the tert-butyl groups. A variable-temperature <sup>1</sup>H NMR study indicated that the four singlet resonances do not tend to coalesce upon heating up to 100 °C (toluene- $d_8$ ), suggesting that both soft phosphorus donors in Ti[OPO]<sub>2</sub> likely remain bound, even at elevated temperatures, to the hard, six-coordinate, tetravalent titanium center. The two phosphorus donors are observed as one singlet resonance at 20 ppm in the <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy, a value that is markedly shifted downfield from those of H<sub>2</sub>[OPO] (-50 ppm)<sup>48</sup> and Li<sub>2</sub>[OPO] (-32 ppm).<sup>45</sup>

Yellowish-orange crystals of Ti[OPO]<sub>2</sub> suitable for X-ray diffraction analysis were grown from a concentrated diethyl ether solution at -35 °C. Crystallographic details are summarized in Table 1. As depicted in Figure 2, Ti[OPO]<sub>2</sub> is a  $C_2$ -symmetric, six-coordinate species, consistent with the solution structure determined by NMR spectroscopy. The  $C_2$  axis lies approximately on the mean P(1)–O(1)–O(3)–P(2) plane and bisects the P(2)–Ti(1)–P(1) angle. The

- (44) Long, R. J.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2006, 45, 511–513.
- (45) Chang, Y.-N.; Liang, L.-C. Inorg. Chim. Acta 2007, 360, 136-142.
- (46) Manzer, L. E. Inorg. Synth. 1982, 21, 135-140.
- (47) Planalp, R. P.; Andersen, R. A.; Zalkin, A. Organometallics **1983**, 2, 16–20.
- (48) Siefert, R.; Weyhermuller, T.; Chaudhuri, P. J. Chem. Soc., Dalton Trans. 2000, 4656–4663.

<sup>(43)</sup> Hu, W.-Q.; Sun, X.-L.; Wang, C.; Gao, Y.; Tang, Y.; Shi, L.-P.; Xia, W.; Sun, J.; Dai, H.-L.; Li, X.-Q.; Yao, X.-L.; Wang, X.-R. Organometallics 2004, 23, 1684–1688.

Table 1. Crystallographic Data for Ti[OPO]<sub>2</sub>, [OPO]TiCl<sub>2</sub>(THF), [OPO]<sub>2</sub>Zr(OH<sub>2</sub>), and [OPO]<sub>2</sub>Hf(OH<sub>2</sub>)

| compound $\{\Pi[OPO]_2\}(Et_2O)_2$ $\{[OPO]\PiCI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\{[0,0]_{22}, (0,0]_{22}, (0,0]_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,0)_{22}, (0,$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formula C <sub>76</sub> H <sub>110</sub> O <sub>6</sub> P <sub>2</sub> Ti C <sub>94</sub> H <sub>124</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Cl_4O_6P_2Ti_2$ $C_{72}H_{102}O_6P_2Zr$ $C_{68}H_{92}HfO_5P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fw 1229.48 1649.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1216.70 1229.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| cryst size (mm <sup>3</sup> ) $0.32 \times 0.3 \times 0.16$ $0.11 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.08 \times 0.02 \qquad 0.36 \times 0.24 \times 0.14 \qquad 0.10 \times 0.10 \times 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $D_{\text{calc}}$ (Mg/m <sup>3</sup> ) 1.081 1.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.129 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cryst syst monoclinic triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | triclinic triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| space group $P2_1/c$ $P\overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P\overline{1}$ $P\overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a (Å) 15.7888(3) 11.2340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8) 13.0543(9) 13.328(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>b</i> (Å) 19.1122(4) 13.267(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1) 15.800(1) 15.052(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| c (Å) 25.3020(6) 16.535(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1) 19.508(2) 18.924(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| α (deg) 90 78.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6) 108.855(7) 67.765(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\beta$ (deg) 98.396(1) 76.747(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5) 104.769(7) 75.820(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\gamma$ (deg) 90 75.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3) 97.517(5) 81.975(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $V(Å^3)$ 7553.3(3) 2293.7(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) 3580.6(5) 3402(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Z 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>T</i> (K) 293(2) 200(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150(2) 150(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| diffractometer Kappa CCD Kappa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCD SMART APEX II SMART APEX II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| radiation, $\lambda$ (Å) Mo Ka, 0.71073 Mo Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.71073 Μο Κα, 0.71073 Μο Κα, 0.71073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $2\theta$ range (deg) 4.16-50.68 4.18-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.98 2.32-52.50 3.38-50.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $h, k, l$ ranges $-19 \le h \le 18$ $-13 \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $h \le 13$ $-16 \le h \le 16$ , $-15 \le h \le 15$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-22 \le k \le 22 \qquad -15 \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k \le 15$ $-19 \le k \le 19$ , $-18 \le k \le 17$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-30 \le l \le 27 \qquad -19 \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $l \le 18 \qquad -24 \le l \le 24 \qquad -22 \le l \le 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| total no. of reflns 54831 26859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25330 18831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| no. of indep reflns 13705 7524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14283 11839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R <sub>int</sub> 0.1011 0.2362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0864 0.1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| abs coeff (mm <sup>-1</sup> ) $0.202$ $0.375$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.244 1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| no. of data/ 13705/0/791 7524/0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 488 14283/32/734 11839/48/698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.022 0.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| final <i>P</i> indices $[I > 2\sigma(I)]$ P1 = 0.0800 P1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{1}{10000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $K_1 = 0.0070$ $K_1 = 0.0070$ $K_1 = 0.0029$ $WP_2 = 0.2157$ $WP_2 = 0.1820$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $WKZ = 0.2105 \qquad WKZ = 0.2105 \qquad WKZ = 0.1620 \qquad D1 = 0.16200 \qquad D1 = 0.16200 \qquad D1 = 0.16$ | WR2 = 0.2157 $WR2 = 0.1050P1 = 0.1850$ $P1 = 0.2560$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $K_1 = 0.1039$ $K_1 = 0.009$ $K_1 = 0.009$ $K_2 = 0.0000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $R_1 = 0.1050$ $R_1 = 0.2509$<br>$R_2 = 0.2670$ $WD_2 = 0.2252$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| wR2 = 0.2013 $wR2 = -0.531$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $w_{K2} = 0.2079$ $w_{K2} = 0.2552$<br>to $\pm 0.567$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Scheme 1



Ti[OPO]<sub>2</sub>

t-Bu

geometry of the titanium center is best described as a distorted octahedron in which both [OPO]<sup>2-</sup> ligands adopt a facial coordination mode. The facial geometry of [OPO]<sup>2-</sup> is anticipated in view of the inherent pyramidal structure of the phosphorus donor. The two phosphorus donors are mutually cis with the P(2)-Ti(1)-P(1) angle of  $89.93(4)^{\circ}$ . The chirality of this molecule shown in Figure 2 is  $\Delta\Lambda\Lambda$ on the basis of the handedness of nonadjacent and noncoplanar chelate ring pairs. We suggest that possible stereoisomers other than this absolute configuration and its enantiomer be virtually not present in the reaction mixture on the basis of the nearly quantitative isolated yield and the solution NMR studies that display only one set of signals for the reaction aliquots. The Ti-O distances (1.896 Å average) are within the expected values for those found in six-coordinate titanium phenolate complexes such as TiCl<sub>2</sub>(2- $OC_6H_4PPh_2)_2$  (1.854 Å average),<sup>44</sup> Ti(OPr)<sub>2</sub>[(2-O-3,5- $Cl_2C_6H_2)CH_2N(Me)CH_2CH_2N(Me)CH_2(2-O-3,5-Cl_2C_6H_2)]$  (1.911 Å average),<sup>12</sup> and {(<sup>i</sup>PrO)<sub>2</sub>Ti( $\mu^3$ -O)TiCl(<sup>i</sup>PrO)](2-OC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>PPh]}<sub>2</sub> (2.044 Å average).<sup>38</sup> Interestingly, the Ti–P distances (2.551 Å average) are slightly shorter than those of titanium complexes supported by bidentate phenolate phosphine ligands such as ( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>(2-O-3-*t*-BuC<sub>6</sub>H<sub>3</sub>-PPh<sub>2</sub>) [2.624(3) Å]<sup>42</sup> and TiCl<sub>2</sub>(2-OC<sub>6</sub>H<sub>4</sub>PPh<sub>2</sub>)<sub>2</sub> (2.691 Å average)<sup>44</sup> but comparable to that of tridentate biphenolate phosphine derived {(<sup>i</sup>PrO)<sub>2</sub>Ti( $\mu^3$ -O)TiCl(<sup>i</sup>PrO)[(2-OC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>-PPh]}<sub>2</sub> [2.563(1) Å].<sup>38</sup> More significantly, the Ti–P distances of Ti[OPO]<sub>2</sub> are notably shorter than the Ti–S distances found for Ti[1]<sub>2</sub> (2.765 Å average),<sup>15</sup> a result that is somewhat surprising in view of the relatively larger atomic size of the phosphorus donor than the sulfur but likely indicative of a stronger chemical bonding for the former to bind titanium than the latter.

After unsuccessful attempts to isolate  $[OPO]TiCl_2(THF)$ under various conditions as described above, we found that comproportionation of Ti $[OPO]_2$  with TiCl<sub>4</sub>(THF)<sub>2</sub> in toluene

Scheme 2



Scheme 3



at room temperature effectively generates [OPO]TiCl<sub>2</sub>(THF) cleanly (Scheme 2). The <sup>1</sup>H NMR spectrum of [OPO]TiCl<sub>2</sub>-(THF) exhibits 1 equiv of a coordinated THF molecule. The  $\alpha$ - and  $\beta$ -CH<sub>2</sub> groups of the titanium-bound THF are



**Figure 2.** Molecular structure of  $Ti[OPO]_2$  with thermal ellipsoids drawn at the 35% probability level. The methyl groups in  $[OPO]^{2-}$  and two unbound diethyl ether molecules found in the asymmetric unit cell are omitted for clarity. Selected bond distances (Å) and angles (deg): Ti(1)-O(1) 1.871(3), Ti(1)-O(3) 1.880(3), Ti(1)-O(2) 1.912(3), Ti(1)-O(4) 1.919(3), Ti(1)-P(2) 2.542(1), Ti(1)-P(1) 2.560(1); O(1)-Ti(1)-O(3) 120.4(1), O(1)-Ti(1)-O(2) 97.5(1), O(3)-Ti(1)-O(2) 91.0(1), O(1)-Ti(1)-O(4) 93.6(1), O(3)-Ti(1)-O(4) 96.5(1), O(2)-Ti(1)-O(4) 161.2(1), O(1)-Ti(1)-P(2) 163.1(1), O(3)-Ti(1)-P(2) 74.91(9), O(2)-Ti(1)-P(2) 78.70(9), O(4)-Ti(1)-P(2) 76.73(9), O(1)-Ti(1)-P(1) 76.44(9), O(3)-Ti(1)-P(1) 160.5(1), O(2)-Ti(1)-P(1) 91.75-(9), P(2)-Ti(1)-P(1) 89.93(4).

observed as two triplet resonances in C<sub>6</sub>D<sub>6</sub> at 4.05 and 0.99 ppm, respectively. In the presence of an excess amount (e.g., 10 equiv) of THF, solutions of [OPO]TiCl<sub>2</sub>(THF) exhibit only one set of resonances for the THF protons, a result that is ascribed to a facile exchange process between the coordinated and free THF molecules. The coordinated THF in [OPO]TiCl<sub>2</sub>(THF) is thus presumably labile and tends to dissociate from the titanium center. Interestingly, a variabletemperature <sup>1</sup>H NMR study (toluene- $d_8$ ) revealed two doublet of triplets resonances with equal intensity at 4.16 and 3.87 ppm for the  $\alpha$ -CH<sub>2</sub> groups of the coordinated THF at -50°C, a result that is reflective of the diastereotopic nature of the  $\alpha$ -CH<sub>A</sub>H<sub>B</sub> moieties at low temperatures. The four *tert*butyl groups in [OPO]TiCl<sub>2</sub>(THF) are observed as four wellresolved singlet resonances at -50 °C but two sharp singlet resonances at temperatures higher than 0 °C, consistent with a fluxional exchange between molecules that are  $C_1$ symmetric and  $C_{\rm s}$ -symmetric, respectively. These results suggest that the coordinated THF in the static structure of [OPO]TiCl<sub>2</sub>(THF) cannot be trans to the phosphorus donor, assuming that the geometry of [OPO]TiCl<sub>2</sub>(THF) is octahedral. Scheme 3 illustrates a plausible mechanism for this fluxional process on the basis of the labile nature of the coordinated THF molecule, in which the THF likely dissociates from the six-coordinate titanium center, thereby generating a five-coordinate, trigonal-bipyramidal [OPO]-TiCl<sub>2</sub>, followed by recoordination of the freed THF molecule. The phosphorus donor of [OPO]<sup>2-</sup> in [OPO]TiCl<sub>2</sub>(THF) appears as a singlet resonance at 18 ppm in the <sup>31</sup>P{<sup>1</sup>H} NMR spectrum.



**Figure 3.** Molecular structure of [OPO]TiCl<sub>2</sub>(THF) with thermal ellipsoids drawn at the 35% probability level. The methyl groups in  $[OPO]^{2-}$  and unbound benzene molecules found in the asymmetric unit cell are omitted for clarity. Selected bond distances (Å) and angles (deg): Ti(1)–O(2) 1.848-(8), Ti(1)–O(1) 1.858(7), Ti(1)–O(3) 2.128(9), Ti(1)–Cl(2) 2.281(3), Ti(1)–Cl(1) 2.340(3), Ti(1)–P(1) 2.596(3); O(2)–Ti(1)–O(1) 96.0(3), O(2)–Ti(1)–O(3) 163.3(3), O(1)–Ti(1)–O(3) 86.1(3), O(2)–Ti(1)–Cl(2) 99.9(2), O(1)–Ti(1)–Cl(2) 96.0(2), O(3)–Ti(1)–Cl(2) 96.3(2), O(2)–Ti(1)–Cl(1) 83.7(2), O(1)–Ti(1)–Cl(1) 159.3(2), O(3)–Ti(1)–Cl(1) 83.8(2), Cl-(2)–Ti(1)–Cl(1) 103.0(1), O(2)–Ti(1)–P(1) 73.7(2), O(1)–Ti(1)–P(1) 75.6(2), O(3)–Ti(1)–P(1) 91.0(2), Cl(2)–Ti(1)–P(1) 168.5(1), Cl(1)–Ti-(1)–P(1) 86.5(1).

Brownish-red crystals of [OPO]TiCl<sub>2</sub>(THF) suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated benzene solution at room temperature. As illustrated in Figure 3, [OPO]TiCl<sub>2</sub>(THF) is a six-coordinate,  $C_1$ -symmetric species that contains a coordinated THF molecule trans to one of the phenolate oxygen donors, consistent with what has been observed from solution NMR spectroscopic studies. The Ti-O, Ti-P, and Ti-Cl distances are all within the expected values for a six-coordinate titanium(IV) complex.<sup>44,49,50</sup> The Ti(1)-Cl(2) distance [2.281-(3) Å] is slightly shorter than Ti(1)-Cl(1) [2.340(3) Å] likely because of the lower trans influence of phosphine than the phenolate oxygen anion. Similar to what has been observed for the bis-ligand complexes of titanium that contain [OPO]and  $[1]^-$  (vide supra), the Ti-P distance of 2.596(3) Å in [OPO]TiCl<sub>2</sub>(THF) is shorter than the Ti-S distances in sulfide-bridged biphenolate complexes of titanium such as  $[(1)TiCl_2]_2 [2.664(2) Å]^{49} [(1)Ti(O'Pr)_2]_2 [2.719(1) Å]^{15}$  and  $[(1)Ti(CH_2Ph)_2]_2(\mu-1,4-dioxane)$  [2.8699(6) Å].<sup>51</sup> Although inconsistent with the relative atomic size and hardness of the donor atoms, the presumably stronger chemical bonding of Ti-P than Ti-S found in this study is reminiscent of that of Ti-Te<sup>49</sup> than of Ti-S<sup>49</sup> of dimeric titanium dichloride complexes that contain the corresponding chalcogenidebridged biphenolate ligands. Such enhanced interaction between tetravalent titanium and the phosphorus donor, as

compared to the sulfur in the biphenolate complexes, is beneficial in view of the decreased insertion barrier for catalytic  $\alpha$ -olefin polymerization as suggested by theoretical calculation studies.<sup>24,25</sup>

In contrast to what has been observed for titanium chemistry, reactions of  $Li_2[OPO]^{45}$  with MCl<sub>4</sub>(THF)<sub>2</sub> (M = Zr, Hf)<sup>46</sup> in a number of solvents such as Et<sub>2</sub>O, THF, or toluene led to intractable materials regardless of the molar ratio of the starting materials employed. Treatment of H<sub>2</sub>- $[OPO]^{48}$  with  $[(Me_3Si)_2N]_2MCl_2$  (M = Zr, Hf),<sup>52</sup> irrespective of the molar ratio, generated colorless crystals of the corresponding bis-ligand complex [OPO]<sub>2</sub>M(OH<sub>2</sub>) as an aqua adduct (Scheme 4). The incorporation of a water molecule in  $[OPO]_2M(OH_2)$  is presumably due to the trace amount of moisture present in the solvent employed. The formation of seven-coordinate [OPO]<sub>2</sub>Zr(OH<sub>2</sub>) and [OPO]<sub>2</sub>Hf(OH<sub>2</sub>) rather than six-coordinate Zr[OPO]<sub>2</sub> or Hf[OPO]<sub>2</sub> that has been found for Ti[OPO]<sub>2</sub> is consistent with the relative atomic sizes of these metals. The putative six-coordinate Zr[OPO]<sub>2</sub> and Hf[OPO]<sub>2</sub> are thus presumably highly electrophilic. The coordinated water molecule in  $[OPO]_2M(OH_2)$  (M = Zr, Hf) at room temperature appears as an extremely broad singlet resonance in the <sup>1</sup>H NMR spectrum at ca. 2.6 ppm, which gradually sharpens upon cooling to temperatures lower than -73 °C (in toluene- $d_8$ ) to give a sharp singlet resonance (see the Supporting Information). These results are indicative of a fast equilibrium involving [OPO]<sub>2</sub>M(OH<sub>2</sub>), M[OPO]<sub>2</sub>, and free water (eq 1). In contrast to those of Ti[OPO]<sub>2</sub> (vide

$$[OPO]_2 M(OH_2) \rightleftharpoons M[OPO]_2 + H_2 O \qquad (1)$$
  
M = Zr, Hf

supra), the *tert*-butyl groups of  $[OPO]_2M(OH_2)$  (M = Zr, Hf) in <sup>1</sup>H NMR spectroscopy at room temperature are observed as two sharp singlet resonances, which do not tend to broaden or resolve until the temperature is lowered to -73°C, indicating a rapid fluxional process that exchanges the tert-butyl groups in the latter complexes. It is likely that a facile turnstile rearrangement occurs for the putative sixcoordinate Zr[OPO]<sub>2</sub> and Hf[OPO]<sub>2</sub> on the basis of the nondissociative nature observed for the phosphorus donors in Ti[OPO]<sub>2</sub>. In accordance with the relative atomic sizes of the group 4 metals, a much higher exchange barrier is anticipated for Ti[OPO]<sub>2</sub> to undergo such a turnstile rearrangement because of the steric repulsion imposed by the two [OPO]<sup>-</sup> ligands. As a result, the static structure of  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$  is likely C<sub>2</sub>-symmetric. Consistent with the conformation discrepancies in these bisligand complexes, the <sup>31</sup>P NMR chemical shift of ca. 3 ppm for both  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$  is notably different from that of Ti[OPO]<sub>2</sub>.

Colorless crystals of  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$  suitable for X-ray diffraction analysis were grown from a concentrated pentane solution at -35 °C. Figures 4 and 5 illustrate the molecular structures of these compounds. Both are isostructural. The geometries of  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$  are best described as a distorted pentagonal

<sup>(49)</sup> Nakayama, Y.; Watanabe, K.; Ueyama, N.; Nakamura, A.; Harada, A.; Okuda, J. Organometallics 2000, 19, 2498–2503.

<sup>(50)</sup> Janas, Z.; Jerzykiewicz, L. B.; Przybylak, K.; Sobota, P.; Szczegot, K.; Wisniewska, D. Eur. J. Inorg. Chem. 2005, 1063–1070.

<sup>(51)</sup> Fokken, S.; Reichwald, F.; Spaniol, T. P.; Okuda, J. J. Organomet. Chem. 2002, 663, 158–163.

<sup>(52)</sup> Andersen, R. A. Inorg. Chem. 1979, 18, 2928-2932.

Scheme 4



bipyramid, with O(1) and O(4) atoms being at the apical positions. The O(1)-M-O(4) angle is 156.6(2)° for  $[OPO]_2Zr(OH_2)$  and  $155.0(3)^\circ$  for  $[OPO]_2Hf(OH_2)$ . The mean deviation of the equatorial pentagon is 0.268 and 0.216 Å for [OPO]<sub>2</sub>Zr(OH<sub>2</sub>) and [OPO]<sub>2</sub>Hf(OH<sub>2</sub>), respectively. Nevertheless, the metal center lies approximately on the mean equatorial plane with a negligible displacement of 0.002 Å for Zr and 0.009 Å for Hf. The M-P distances of 2.776 Å (average) for [OPO]<sub>2</sub>Zr(OH<sub>2</sub>) and 2.709 Å (average) for [OPO]<sub>2</sub>Hf(OH<sub>2</sub>) are comparable to those found for zirconium and hafnium complexes of triarylphosphines such as [NPN]- $ZrCl_2$  (2.7229(8) Å, [NPN] = [(2,4,6-Me\_3C\_6H\_2)N-2-(5- $MeC_6H_3)]_2PPh)$ ,<sup>41</sup> [NP]<sub>2</sub>ZrCl<sub>2</sub> (2.801 Å average, [NP]<sup>-</sup> = *N*-(2-diphenylphosphinophenyl)-2,6-dimethylanilide),<sup>40</sup> ZrCl<sub>2</sub>- $(2-O-3-t-BuC_6H_3P^iPr_2)_2$  (2.808 Å average),<sup>44</sup> [NP]<sub>2</sub>HfCl<sub>2</sub>  $(2.7736(9) \text{ Å}, [NP]^- = N-(2-diphenylphosphinophenyl)-2,6$ dimethylanilide),<sup>40</sup> and HfCl<sub>2</sub>(2-O-3-t-BuC<sub>6</sub>H<sub>3</sub>PPh<sub>2</sub>)<sub>2</sub> (2.829



Å average).<sup>44</sup> Consistent with the intramolecular steric congestion of these seven-coordinate species, the M-O(phenolate) distances of 2.063 Å (average) and 2.038 Å (average) for  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$ , respectively, are slightly longer than the corresponding values of sixcoordinate group 4 phenolate complexes such as ZrCl<sub>2</sub>(2-O-3-t-BuC<sub>6</sub>H<sub>3</sub>P<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub> (1.998 Å average),<sup>44</sup> {[(2-O-3,5-t- $Bu_2C_6H_2)CH_2l_2NCH_2CH_2NMe_2$  ZrBn<sub>2</sub> (1.995 Å average),<sup>53</sup> HfCl<sub>2</sub>(2-O-3-t-BuC<sub>6</sub>H<sub>3</sub>PPh<sub>2</sub>)<sub>2</sub> (1.973 Å average),<sup>44</sup> and {[(2-O-3,5-t-Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)CH<sub>2</sub>]<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>}HfBn<sub>2</sub> (1.978 Å average).<sup>53</sup> As anticipated, the M–O(water) distances [2.329(5) Å for Zr and 2.19(1) Å for Hf] are significantly longer than the corresponding M-O(phenolate) values. In agreement with the solution structure determined by NMR spectroscopic studies, both  $[OPO]_2Zr(OH_2)$  and  $[OPO]_2Hf(OH_2)$  are  $C_2$ symmetric in the solid state. The  $C_2$  axis coincides with the M-O(5) bond.



**Figure 4.** Molecular structure of  $[OPO]_2Zr(OH_2)$  with thermal ellipsoids drawn at the 35% probability level. The methyl groups in  $[OPO]^{2-}$  and one unbound diethyl ether molecule found in the asymmetric unit cell are omitted for clarity. Selected bond distances (Å) and angles (deg): O(2)– Zr(1) 2.103(4), O(1)–Zr(1) 2.035(4), O(4)–Zr(1) 2.033(4), O(3)–Zr(1) 2.079(4), O(5)–Zr(1) 2.329(5), P(1)–Zr(1) 2.795(2), P(2)–Zr(1) 2.757(2); O(4)–Zr(1)–O(1) 156.6(2), O(4)–Zr(1)–O(3) 97.6(2), O(1)–Zr(1)–O(3) 89.1(2), O(4)–Zr(1)–O(2) 89.7(2), O(1)–Zr(1)–O(2) 97.1(2), O(3)–Zr(1)–O(5) 101.0(2), O(1)–Zr(1)–O(5) 102.4(2), O(3)–Zr(1)–O(5) 74.4(2), O(2)–Zr(1)–O(5) 72.1(2), O(4)–Zr(1)–P(2) 90.9(1), O(3)–Zr(1)–P(2) 69.4(1), O(2)–Zr(1)–P(2) 142.8(1), O(5)–Zr(1)–P(2) 141.1(1), O(4)–Zr(1)–P(1) 91.3(1), O(1)–Zr(1)–P(1) 71.0(1), O(3)–Zr(1)–P(1) 81.29(5).

**Figure 5.** Molecular structure of  $[OPO]_2Hf(OH_2)$  with thermal ellipsoids drawn at the 35% probability level. The methyl groups in  $[OPO]^{2-}$  are omitted for clarity. Selected bond distances (Å) and angles (deg): Hf(1)-O(4) 1.996(9), Hf(1)-O(1) 2.028(9), Hf(1)-O(2) 2.05(1), Hf(1)-O(3) 2.08-(1), Hf(1)-O(5) 2.19(1), Hf(1)-P(2) 2.695(4), Hf(1)-P(1) 2.723(5); O(4)-Hf(1)-O(1) 155.0(3), O(4)-Hf(1)-O(2) 90.2(4), O(1)-Hf(1)-O(2) 95.4(4), O(4)-Hf(1)-O(3) 99.5(4), O(1)-Hf(1)-O(3) 89.5(4), O(2)-Hf(1)-O(3) 145.9(4), O(4)-Hf(1)-O(5) 103.3(4), O(1)-Hf(1)-O(5) 101.7(4), O(2)-Hf(1)-O(5) 72.8(4), O(3)-Hf(1)-O(5) 73.1(4), O(4)-Hf(1)-P(2) 72.1-(3), O(1)-Hf(1)-P(2) 89.7(3), O(2)-Hf(1)-P(2) 144.1(3), O(3)-Hf(1)-P(2) 140.6(3), O(4)-Hf(1)-P(1) 186.7(3), O(1)-Hf(1)-P(1) 139.7(3), P(2)-Hf(1)-P(1) 79.7(1).

#### Conclusions

In summary, we have prepared a series of group 4 complexes of the tridentate biphenolate phosphine ligand  $[OPO]^{2-}$  and established the solution and solid-state structures of these molecules by means of multinuclear NMR spectroscopy and X-ray crystallography. These compounds represent the rarely encountered triarylphosphine complexes of group 4 metals that have been structurally characterized to date. Of particular note is perhaps the somewhat stronger chemical bond of the soft phosphorus donor in  $[OPO]^{2-}$  to hard tetravalent titanium than that of the sulfur in  $1.^{15.49}$  Such enhanced interaction is likely advantageous for the development of highly active catalysts for  $\alpha$ -olefin polymerization. Studies directed to delineate the reactivity of these compounds are currently underway.

## **Experimental Section**

General Procedures. Unless otherwise specified, all experiments were performed under nitrogen using standard Schlenk or glovebox techniques. All solvents were reagent-grade or better and were purified by standard methods. The NMR spectra were recorded on Varian Unity or Bruker AV instruments. Chemical shifts ( $\delta$ ) are listed as parts per million downfield from tetramethylsilane and coupling constants (J) in hertz. <sup>1</sup>H NMR spectra are referenced using the residual solvent peak at  $\delta$  7.16 for C<sub>6</sub>D<sub>6</sub> and  $\delta$  2.09 for toluene- $d_8$  (the most upfield resonance). <sup>13</sup>C NMR spectra are referenced using the residual solvent peak at  $\delta$  128.39 for C<sub>6</sub>D<sub>6</sub>. The assignment of the carbon atoms is based on the DEPT <sup>13</sup>C NMR spectroscopy. <sup>31</sup>P NMR spectra are referenced externally using 85% H<sub>3</sub>PO<sub>4</sub> at  $\delta$  0. Routine coupling constants are not listed. All NMR spectra were recorded at room temperature in specified solvents unless otherwise noted. Elemental analysis was performed on a Heraeus CHN-O Rapid analyzer.

**Materials.** Compounds  $H_2[OPO]$ ,<sup>48</sup> Li<sub>2</sub>[OPO],<sup>45</sup> TiCl<sub>4</sub>(THF)<sub>2</sub>,<sup>46</sup> and [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>2</sub>MCl<sub>2</sub> (M = Zr, Hf)<sup>52</sup> were prepared according to the literature procedures. All other chemicals were obtained from commercial vendors and used as received.

X-ray Crystallography. Table 1 summarizes the crystallographic data for Ti[OPO]<sub>2</sub>, [OPO]TiCl<sub>2</sub>(THF), [OPO]<sub>2</sub>Zr(OH<sub>2</sub>), and [OPO]<sub>2</sub>-Hf(OH<sub>2</sub>). Data were collected on a Bruker-Nonius Kappa CCD diffractometer or a SMART APEX II diffractometer with graphitemonochromated Mo K $\alpha$  radiation ( $\lambda = 0.7107$  Å). Structures were solved by direct methods and refined by full-matrix least-squares procedures against  $F^2$  using the WinGX crystallographic software package or SHELXL-97. All full-weight non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions. In Ti[OPO]2, three tert-butyl groups are disordered, with the methyl substituents being in the ratio of ca. 50:50 over two conformations. The crystals of [OPO]TiCl<sub>2</sub>(THF) were of poor quality but sufficient to establish the identity of this molecule. In [OPO]TiCl<sub>2</sub>(THF), three tert-butyl groups are disordered, with the methyl substituents being in the ratio of either ca. 70:30 or 49:51 over two conformations. In [OPO]<sub>2</sub>Zr(OH<sub>2</sub>), one tert-butyl group is disordered, with the methyl substituents being in the ratio of ca. 53:47 over two conformations.

Synthesis of Ti[OPO]<sub>2</sub>. Method 1: Solid 2,2'-phenylphosphinobis(4,6-di-*tert*-butylphenol) (H<sub>2</sub>[OPO]; 500 mg, 0.97 mmol) was dissolved in toluene (5 mL) and cooled to -35 °C. To this was

added dropwise a prechilled solution of Ti(OEt)<sub>4</sub> (110 mg, 0.48 mmol) in toluene (1 mL) at -35 °C. The reaction mixture was stirred at room temperature for 10 h and evaporated to dryness under reduced pressure. The resulting yellowish-orange solid was dissolved in diethyl ether (8 mL), and the ether solution was filtered through a pad of Celite. The extraction and filtration procedures were repeated again, and the filtrates were combined. Evaporation of the diethyl ether solution under reduced pressure afforded the product as a yellowish-orange solid; yield 507 mg (97%). Employment of Ti(O<sup>i</sup>Pr)<sub>4</sub> in place of Ti(OEt)<sub>4</sub> gave the same result. Method 2: Solid H<sub>2</sub>[OPO] (100 mg, 0.19 mmol) was dissolved in toluene (4 mL) and cooled to -35 °C. To this was added n-BuLi (0.24 mL, 1.6 M in hexane, Aldrich, 0.38 mmol, 2 equiv) dropwise. The reaction mixture was stirred at room temperature for 1 h. The resultant suspension was cooled to -35 °C again and added in portions to prechilled TiCl<sub>4</sub>(THF)<sub>2</sub> (31.8 mg, 0.095 mmol, 0.5 equiv) suspended in toluene (4 mL) at -35 °C. The reaction mixture was stirred at room temperature for 16 h and evaporated to dryness under reduced pressure. The brown solid thus obtained was dissolved in diethyl ether (6 mL  $\times$  2). The diethyl ether solution was filtered through a pad of Celite and evaporated to dryness to afford the product as a yellowish-orange solid; yield 98 mg (94%). Yellowishorange crystals suitable for X-ray diffraction analysis were grown from a concentrated diethyl ether solution at -35 °C. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz):  $\delta$  7.47 (d, 2, Ar), 7.39 (d, 2, Ar), 7.34 (m, 4, Ar), 7.26 (dd, 2, Ar), 7.19 (dd, 2, Ar), 6.92 (m, 6, Ar), 1.68 (s, 18, CMe<sub>3</sub>), 1.52 (s, 18, CMe<sub>3</sub>), 1.12 (s, 18, CMe<sub>3</sub>), 1.09 (s, 18, CMe<sub>3</sub>). <sup>1</sup>H NMR (toluene-d<sub>8</sub>, 500 MHz): δ 7.44 (d, 2, Ar), 7.36 (d, 2, Ar), 7.26 (m, 4, Ar), 7.19 (dd, 2, Ar), 7.12 (td, 2, Ar), 6.92 (m, 6, Ar), 1.66 (s, 18, CMe<sub>3</sub>), 1.48 (s, 18, CMe<sub>3</sub>), 1.13 (s, 18, CMe<sub>3</sub>), 1.10 (s, 18, CMe<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 202.31 MHz):  $\delta$  20.36  $(\Delta v_{1/2} = 1.83 \text{ Hz})$ . <sup>31</sup>P{<sup>1</sup>H} NMR (toluene- $d_8$ , 80.95 MHz):  $\delta$ 20.33. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 125.70 MHz):  $\delta$  169.66 (d,  $J_{CP}$  = 27.15, C), 167.90 (d,  $J_{CP} = 8.04$ , C), 167.70 (d,  $J_{CP} = 7.04$ , C), 144.71 (d,  $J_{CP} = 6.03$ , C), 142.12 (d,  $J_{CP} = 6.03$ , C), 137.15 (d,  $J_{\rm CP} = 6.03$ , C), 136.54 (d,  $J_{\rm CP} = 9.05$ , C), 133.52 (d,  $J_{\rm CP} = 11.19$ , CH), 130.23 (s, CH), 129.26 (d,  $J_{CP} = 4.02$ , C), 128.85 (s, CH), 128.77 (s, CH), 127.86 (s, CH), 127.72 (s, CH), 126.62 (d,  $J_{CP} =$ 12.07, CH), 122.38 (d,  $J_{CP} = 44.25$ , C), 36.00 (s, CMe<sub>3</sub>), 35.99 (s, CMe<sub>3</sub>), 35.00 (s, CMe<sub>3</sub>), 34.80 (s, CMe<sub>3</sub>), 31.94 (s, CMe<sub>3</sub>), 31.91-(s, CMe<sub>3</sub>), 30.31 (s, CMe<sub>3</sub>), 30.02 (s, CMe<sub>3</sub>). Anal. Calcd for C<sub>68</sub>H<sub>90</sub>O<sub>4</sub>P<sub>2</sub>Ti: C, 75.53; H, 8.39. Found: C, 75.56; H, 8.30.

Synthesis of [OPO]TiCl<sub>2</sub>(THF). Toluene (5 mL) was added to a solid mixture of Ti[OPO]2 (100 mg, 0.09 mmol) and TiCl4(THF)2 (30.7 mg, 0.09 mmol) at room temperature. After being stirred at room temperature for 6 h, the reaction mixture was filtered through a pad of Celite, which was further washed with toluene (1 mL). The filtrates were combined and concentrated under reduced pressure until the volume became ca. 1 mL. Cooling the concentrated toluene solution to -35 °C afforded the product as a brownish-red solid; yield 82 mg (63%). Brownish-red crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated benzene solution at room temperature. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz): δ 7.90 (t, 2, Ar), 7.49 (d, 2, Ar), 7.38 (dd, 2, Ar), 7.13 (td, 2, Ar), 7.07 (m, 1, Ar), 4.05 (t, 4, OCH<sub>2</sub>CH<sub>2</sub>), 1.61 (s, 18, CMe<sub>3</sub>), 1.13 (s, 18, CMe<sub>3</sub>), 0.99 (t, 4, OCH<sub>2</sub>CH<sub>2</sub>). <sup>1</sup>H NMR (toluene-*d*<sub>8</sub>, 500 MHz): δ 7.86 (t, 2, Ar), 7.47 (d, 2, Ar), 7.32 (dd, 2, Ar), 7.15 (td, 3, Ar), 4.01 (t, 4, OCH<sub>2</sub>CH<sub>2</sub>), 1.60 (s, 18, CMe<sub>3</sub>), 1.15 (s, 22, CMe<sub>3</sub> + OCH<sub>2</sub>CH<sub>2</sub>). <sup>1</sup>H NMR (toluene- $d_8$ , 500 MHz, -50 °C): δ 7.93 (dd, 2, Ar), 7.60 (s, 1, Ar), 7.50 (dd, 1, Ar), 7.44 (s, 1, Ar), 7.30 (dd, 1, Ar), 7.12 (td, 2, Ar), 7.03 (t, 1, Ar), 4.16 (td, 2, OCH<sub>A</sub>H<sub>B</sub>CH<sub>2</sub>), 3.87 (td, 2, OCH<sub>A</sub>H<sub>B</sub>CH<sub>2</sub>), 1.72 (s, 9, CMe<sub>3</sub>), 1.59 (s, 9, CMe<sub>3</sub>), 1.16 (s, 9, CMe<sub>3</sub>), 1.14 (s, 9, CMe<sub>3</sub>),

<sup>(53)</sup> Tshuva, E. Y.; Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organometallics 2002, 21, 662–670.

## Biphenolate Phosphine Complexes of Group 4 Metals

0.80 (t, 4, OCH<sub>2</sub>CH<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 202.31 MHz):  $\delta$  18.06. <sup>31</sup>P{<sup>1</sup>H} NMR (toluene, 80.95 MHz):  $\delta$  16.89. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 125.70 MHz):  $\delta$  169.07 (d,  $J_{CP} = 27.90$ , C), 145.88 (d,  $J_{CP} = 5.02$ , C), 136.98 (d,  $J_{CP} = 6.41$ , C), 133.09 (d,  $J_{CP} = 10.06$ , CH), 131.24 (s, CH), 129.53 (d,  $J_{CP} = 9.68$ , CH), 128.93 (d,  $J_{CP} = 7.79$ , C), 128.68 (s, CH), 127.25 (d,  $J_{CP} = 1.38$ , CH), 126.03 (s, C), 75.25 (s, OCH<sub>2</sub>CH<sub>2</sub>), 36.01 (d,  $J_{CP} = 1.38$ , CMe<sub>3</sub>), 35.13 (s, CMe<sub>3</sub>), 31.86 (s, CMe<sub>3</sub>), 30.18 (s, CMe<sub>3</sub>), 25.36 (s, OCH<sub>2</sub>CH<sub>2</sub>). Anal. Calcd for C<sub>38</sub>H<sub>53</sub>Cl<sub>2</sub>O<sub>3</sub>PTi: C, 64.50; H, 7.55. Found: C, 64.37; H, 7.55.

Synthesis of [OPO]<sub>2</sub>Zr(OH<sub>2</sub>). Pentane (6 mL) was added to a solid mixture of H<sub>2</sub>[OPO] (445 mg, 0.86 mmol) and [(Me<sub>3</sub>-Si)<sub>2</sub>N]<sub>2</sub>ZrCl<sub>2</sub> (207 mg, 0.43 mmol, 0.5 equiv) at room temperature. The reaction solution was stirred at room temperature for 3 h and filtered through a pad of Celite. The Celite pad was further washed with pentane (2 mL  $\times$  2), and the filtrates were combined. The pentane solution was concentrated under reduced pressure until the volume became ca. 1 mL. Cooling the concentrated pentane solution to -35 °C overnight afforded colorless crystals suitable for X-ray diffraction analysis; yield 191 mg (73%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz):  $\delta$  7.41 (d, 4, Ar), 7.25 (m, 4, Ar), 7.12 (t, 4, Ar), 6.88 (t, 2, Ar), 6.81 (t, 4, Ar), 2.52 (br s, 2, H<sub>2</sub>O), 1.54 (s, 36, CMe<sub>3</sub>), 1.15 (s, 36, CMe<sub>3</sub>). <sup>1</sup>H NMR (toluene-d<sub>8</sub>, 500 MHz): δ 7.38 (d, 4, Ar), 7.18 (m, 4, Ar), 7.05 (t, 4, Ar), 6.88 (t, 2, Ar), 6.82 (t, 4, Ar), 2.69 (br s, 2, H<sub>2</sub>O), 1.53 (s, 36, CMe<sub>3</sub>), 1.16 (s, 36, CMe<sub>3</sub>).  ${}^{31}P{}^{1}H{}$ NMR (C<sub>6</sub>D<sub>6</sub>, 202.31 MHz):  $\delta$  2.99 ( $\Delta v_{1/2}$  = 13.73 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (toluene- $d_8$ , 80.95 MHz):  $\delta$  3.51. <sup>31</sup>P{<sup>1</sup>H} NMR (pentane, 80.95 MHz): δ 4.28. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 125.70 MHz): δ 167.98 (m, C), 141.24 (s, C), 136.48 (s, C), 133.42 (t,  $J_{CP} = 5.97$ , CH), 131.56 (m, C), 128.77 (s, CH), 128.68 (m, CH), 127.15 (s, CH), 126.81 (s, CH), 125.06 (m, C), 35.71 (s, CMe<sub>3</sub>), 34.74 (s, CMe<sub>3</sub>), 32.02 (s, CMe<sub>3</sub>), 30.38 (s, CMe<sub>3</sub>). Anal. Calcd for C<sub>68</sub>H<sub>92</sub>O<sub>5</sub>P<sub>2</sub>Zr: C, 71.48; H, 8.12. Found: C, 71.72; H, 8.34.

Synthesis of  $[OPO]_2Hf(OH_2)$ . Pentane (3 mL) was added to a solid mixture of  $H_2[OPO]$  (100 mg, 0.19 mmol) and  $[(Me_3-Si)_2N]_2HfCl_2$  (55 mg, 0.096 mmol, 0.5 equiv) at room temperature. The reaction solution was stirred at room temperature for 9 h and

filtered through a pad of Celite. The Celite pad was further washed with pentane (2 mL  $\times$  2), and the filtrates were combined. The pentane solution was concentrated under reduced pressure until the volume became ca. 1 mL. Cooling the concentrated pentane solution to -35 °C overnight afforded colorless crystals suitable for X-ray diffraction analysis; yield 77 mg (71%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz): δ 7.43 (d, 4, Ar), 7.26 (m, 4, Ar), 7.12 (m, 4, Ar), 6.87 (t, 2, Ar), 6.80 (t, 4, Ar), 2.67 (br s, 2, H<sub>2</sub>O), 1.53 (s, 36, CMe<sub>3</sub>), 1.15 (s, 36, CMe<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 202.31 MHz):  $\delta$  2.62 ( $\Delta v_{1/2}$ ) = 8.41 Hz).  ${}^{31}P{}^{1}H$  NMR (pentane, 80.95 MHz):  $\delta$  4.35.  ${}^{13}C$ -{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 125.70 MHz):  $\delta$  168.11 (t,  $J_{CP} = 14.20$ , C), 141.12 (t,  $J_{CP} = 2.26$ , C), 137.11 (t,  $J_{CP} = 1.76$ , C), 133.43 (t,  $J_{CP}$ = 5.91, CH), 131.78 (dd,  $J_{CP}$  = 14.71 and 17.35, C), 128.68 (s, CH), 128.62 (m, CH), 127.21 (s, CH), 126.84 (s, CH), 124.78 (dd,  $J_{\rm CP} = 20.11$  and 22.00, C), 35.65 (s, CMe<sub>3</sub>), 34.71 (s, CMe<sub>3</sub>), 32.04 (s, CMe<sub>3</sub>), 30.41(s, CMe<sub>3</sub>). Anal. Calcd for C<sub>68</sub>H<sub>92</sub>HfO<sub>5</sub>P<sub>2</sub>: C, 66.41; H, 7.54. Found: C, 66.80; H, 7.79.

Acknowledgment. We thank the National Science Council of Taiwan for financial support (Grant NSC 95-2113-M-110-001) of this work, Ru-Rong Wu (National Cheng Kung University) for technical assistance with variable-temperature NMR experiments, Ting-Shen Kuo (National Taiwan Normal University) for solving the X-ray structures of Ti[OPO]<sub>2</sub> and [OPO]TiCl<sub>2</sub>(THF), and the National Center for Highperformance Computing (NCHC) for access to chemical databases. Han-Sheng Chen is acknowledged for performing the experiments of Ti(O<sup>i</sup>Pr)<sub>4</sub> with H<sub>2</sub>[OPO]. We also thank the reviewers for insightful comments.

**Supporting Information Available:** Variable-temperature <sup>1</sup>H NMR spectra of [OPO]<sub>2</sub>Zr(OH<sub>2</sub>) and X-ray crystallographic data in CIF format for Ti[OPO]<sub>2</sub>, [OPO]TiCl<sub>2</sub>(THF), [OPO]<sub>2</sub>Zr(OH<sub>2</sub>), and [OPO]<sub>2</sub>Hf(OH<sub>2</sub>). This material is available free of charge via the Internet at http://pubs.acs.org.

IC062314E